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We have studied the isotopes 82Rbys,
#Rbys, and **Rby; to search for magnetic
rotation which is predicted in the tilted-axis
cranking model for a certain mass region
around A = 80. Excited states in these nu-
clei were populated via the reaction
"B + 7°Ge with E =50 MeV at the XTU
tandem accelerator of the LNL Legnaro.
Based on a y-coincidence experiment using
the spectrometer GASP we have found
magnetic dipole bands in each studied nu-
clide. The regular M1 bands observed in
the odd-odd nuclei ¥Rb and *Rb include
B(M1)/B(E2) ratios decreasing smoothly
with increasing spin in a range of
137 =J" = 16". These bands are inter-
preted in the tilted-axis cranking model on

the basis of four-quasiparticle configura-
tions of the type m(fp) mgq, vgon. This is
the first evidence of magnetic rotation in
the A = 80 region. In contrast, the M1 se-
quences in the odd-even nucleus *’Rb are
not regular, and the B(M1)/B(E2) ratios
show a pronounced staggering.
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1. Introduction

In the tilted-axis cranking (TAC) model [1], which
considers the rotation of the nucleus about axes tilted
with respect to the principal axes, a new rotational mode
referred to as magnetic rotation has been established.
This mode is expected to appear in nuclei with small
deformation, if multi-quasiparticle configurations are
formed from high-j proton particles and high-j neutron
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holes or vice versa. The coupling of these configurations
results in a large transverse magnetic moment. The ro-
tating magnetic dipole gives rise to the emission of mag-
netic dipole (M1) radiation in contrast to the electric
quadrupole (E2) radiation induced by the rotating de-
formed electric charge distribution in the case of con-
ventional rotation. In the case of magnetic rotation the
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total spin is built up by the gradual alignment of the
spins of the high-j nucleons (“shears mechanism”). This
concept has been applied for the first time to the M1
bands (“shears bands”) discovered in nuclei around **Pb
[2]. The predicted decrease of the M1 transition strength
with increasing spin caused by the gradual alignment of
the individual spin vectors (closing of the shears) has
recently been experimentally proven for the M1 bands in
198.199p [3]. Magnetic rotation is also predicted for other
mass regions of the nuclear chart [4]. Indeed, it has
recently been observed in '®Sn [5], ''°Cd [6], and **Sm
[7].

Among the mass regions, where magnetic rotation is
predicted to occur, there is also the region around A = 80
[4]. There, the particle-like protons fill successively the
fp and the high-j intruder g, levels while hole-like neu-
trons occupy the go, level. Indeed, sequences of intense
MI transitions starting at about E =3 MeV have been
found in several Br, Rb, and Kr isotopes (see, e.g., [8]
and Refs. therein) but there is too little experimental
information so far to prove the appearance of magnetic
rotation. To search for experimental evidence of the
predicted magnetic rotation in this region we have inves-
tigated the nuclides *’Rbys, **Rbyg, and *Rb,;.

2. Experimental Results

Excited states in ¥*%*%Rb were populated via the re-
action ''B + *Ge at E = 50 MeV using the ''B beam of
the XTU tandem accelerator of the LNL Legnaro. vy rays
were detected with the spectrometer GASP. A total of
1.5 X 10°® three-fold coincidence events was recorded in
a thin-target experiment. On the basis of this experiment
we have found several new band structures with respect
to previous work [9,10]. In particular, M1 bands have
been found for the first time in each studied nuclide.
Partial level schemes including these bands found in the
present experiment are shown in Fig. 1. These level
schemes result from y-y and y-y-y coincidence rela-
tions and +y-ray intensities. Spin and parity assignments
are based on <y-y directional correlations and deexcita-
tion modes.

3. Interpretation

The M1 bands of negative parity observed in the
odd-odd nuclei *Rb and *Rb are regular (E, o J). The
B(M1)/B(E2) ratios deduced from the intensities of
transitions deexciting a certain state of the M1 band
reach values up to 25 (un/eb)* and decrease smoothly
with increasing spin in a range of 13 = J = 16. This is

134

an important characteristic of magnetic rotation. Thus,
we have interpreted these bands in the framework of the
TAC model [1]. In the calculations, the lowest-lying
four-quasiparticle (4¢gp) configuration for Z=37 and
N =45, 47 turns out to be w(fp) g2, vgop, which has
been adopted. The parameter « of the QQ interaction
was adjusted such that in a calculation for the even-even
neighbor ¥Kr the experimental B(E2, 2* — 0%) [11]
value is reproduced and in the case of 3Rb scaled ac-
cording to k < A~>*. An equilibrium deformation of
€ =0.16 was obtained for the adopted 4gp configura-
tion in both ¥*Rb. The nuclei turn out to be very soft
with respect to vy deformation with a tendency to posi-
tive values in ¥Rb but negative values in *Rb. The
values of y=20° and y= — 10° are used for **Rb and
¥Rb, respectively. The experimental and calculated
B(M1)/B(E2) ratios are compared in Fig. 2. The exper-
imental values in **Rb are well reproduced in the calcu-
lations. This is also the case for *Rb up to Zw= 0.7
MeV. The increase of the experimental values at higher
frequency can not be described within the assumed 4¢gp
configuration. It is probably due to a change to a 6gp
configuration.

The M1 bands C and D in ¥Rb are irregular. More-
over, the experimental B(M1)/B(E2) ratios of these
bands shown in Fig. 2 display a pronounced staggering
which is not compatible with regular shears bands. In
contrast to the odd-odd nuclei, the breakup of a pair of
neutrons is necessary in **Rb to generate 3gp or 5gp
configurations of the shears type. This may drive the
nuclear shape to very small quadrupole deformation,
which is incapable of establishing a stable shears mech-
anism.

Summarizing, we have observed M1 bands in *Rb,
8Rb, and *Rb for the first time. The B(M1)/B(E2)
ratios are of the order 10 (pn/eb)* to 20 (un/eb)* and
decrease with the angular momentum. This is character-
istic for Magnetic Rotation. Thus, first evidence of the
predicted existence of this new mode near A = 80 has
been provided. The M1 bands in the doubly odd nuclei
2Rb and Rb can be described in the TAC model on the
basis of a 4gp shears configuration. In contrast, the M1
bands in the odd-even nucleus ¥*Rb are not regular. The
difference may be caused by the breakup of a neutron
pair driving the nucleus to substantially smaller defor-
mation, which is incapable of sustaining the shears
mechanism.
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Fig. 1. Partial level schemes of *Rb (top left) and %Rb (top right) and $Rb (bottom) deduced from this work.
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Fig. 2. Experimental and calculated B(M1)/B(E2) ratios of the negative-parity M1 bands in **Rb (left panel) and **Rb (middle panel). Experimental
B(M1)/B(E2) ratios of the M1 bands C and D in ¥*Rb (right panel).
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